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1. Introduction 

Supercomputing and High-Performance Computing (HPC) are vital assets in the 
science and engineering fields. Problems are larger and more complex; therefore, 
they require more computing resources with more compute capability. Problems 
that a decade ago were considered infeasible can now be solved in a matter of hours. 
Modern supercomputers are composed of multiple architectures—otherwise known 
as heterogeneous computers—working together to solve a problem as quickly as 
possible, provided the programmer has the skill to use all of the different 
components correctly and efficiently. 

This has opened a field of research to examine how to best use these 
supercomputers. One major unknown is how the different computer architectures 
are going to perform with different applications. One approach is to use a program 
that will provide performance numbers for each available architecture to help 
predict performance and determine the best computer for each application. These 
are normally called benchmark programs, or just benchmarks.   

Benchmark programs are defined as programs that are used to document 
performance on a computer—or a set of computers—to compare performance 
between them or to document performance of a particular application on a given 
architecture. Creating a mechanism to accurately predict performance is extremely 
difficult on a heterogeneous computer given the complexity of the different 
architectures present and the necessary interface that must be maintained between 
them.  

Current and future trends in heterogeneous computers require that there must be a 
way to predict performance on these machines. There is a need for ways to compare 
machines to determine the best one to use for a given application. The goal of this 
work is to develop a benchmarking method to predict performance on 
heterogeneous computers through the use of optimal benchmark programs, while 
only maintaining one code base to minimize the amount of time required to 
maintain the benchmark programs. There are 2 benchmarking methods most 
commonly used. 

One of the main problems when benchmarking HPC machines is comparing 
optimal performance across a variety of architectures. Usually this requires more 
than one code base to ensure optimal programs are run on each architecture, 
ensuring accurate and fair comparisons. Code optimized to run on one architecture 
is not guaranteed to run optimally on another architecture. Another issue 
benchmarking mechanisms face is how to choose programs that are reflective of 
real world scenarios to ensure the performance numbers produced can be correlated 
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to real world performance. It is important to choose benchmark programs 
appropriately; they cannot be too big or too small, and they must be easy to 
understand, easy to maintain, easy to execute, and reflective of what will be faced 
within the applications. 

The first method involves creating one program and running it on each machine to 
produce performance numbers comparable across all machines. The most well-
known example of this is the Top 500 list, which uses one program—Linpack—to 
rank the top supercomputers in the world. There are some advantages to this 
approach. The first being it is easy to maintain because you are only having to 
maintain one program instead of a collection of programs. Additionally, having one 
program makes it easier to optimize for one architecture each time it is run. It is 
also easier to run because you only have to worry about executing one program; 
therefore, you do not have to be concerned about differences in setup. There are 
also some disadvantages to this approach. Since only one algorithm is used, it is 
only good for predicting performance for that algorithm. It really cannot be used to 
make generalized statements about the architecture. Very rarely are complex 
applications (i.e., those faced by the science and engineering fields) covered by one 
simple benchmark program; therefore, benchmarking methods like this cannot be 
used to make general statements about the architecture’s performance in real-world 
applications. Another disadvantage is that having one algorithm makes it harder to 
compare across architectures and determine the impact parameters have on the 
architecture.  

The second method is to use a suite of application programs to benchmark an 
architecture. The most common approach for using a suite is based on the work 
presented by the University of California, Berkeley.1 Within their report, the 
concept of 13 computational dwarfs is presented where the 13 dwarfs represent the 
most commonly faced problems in the science and engineering fields. By using a 
collection of these dwarfs, one can adequately predict how the architecture will 
perform with real world science and engineering applications. It also provides a 
good way to compare performance across architectures. However, a downside to 
this method is the effort it takes to maintain a suite. Normally the suite contains 
numerous smaller programs for which an interface has to be designed and 
maintained.  

One problem both of these methods face is how to ensure comparisons between 
architectures and machines are as accurate and fair as possible. Optimizations on 
one architecture are not necessarily optimizations on other architectures. In fact, 
sometimes they can have a negative impact on performance. This could potentially 
lead to misleading results in benchmarking. If one is comparing results that have 
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been optimized for one architecture yet run on an architecture where those 
optimizations hurt performance, it will not give accurate comparison data.  

A potential solution to this problem is to optimize each benchmark program to each 
architecture. This will provide the fairest comparison data possible. However, 
doing this manually is nearly impossible especially as the number of potential 
architectures and benchmark programs increase. An automatic method to sweep 
over all tunable parameters is preferred. This concept is called “autotuning”, where 
the kernel parameters for each benchmark program are tuned without human 
intervention for each available architecture. For this work, an exhaustive search 
method will be used for the autotuning method to ensure that all parameter 
combinations are explored.  

A benchmark suite was previously started at the US Army Research Laboratory 
(ARL) that implemented a handful of the dwarfs and used autotuning 
methodologies to compare optimal performance of various architectures. The work 
presented here builds upon this by adding the Backtrack Branch and Bound (BBB) 
algorithm to that suite.  

The next 2 sections provide more information about existing benchmark suites and 
the available open-source suites. Sections 4–6 provide a detailed explanation of the 
BBB benchmark program that was added in this effort, along with a description of 
the method used to add this kernel to the suite. Results from running the particular 
kernel on the ARL Department of Defense Supercomputing Resource Center’s 
(DSRC’s) Supercomputers are presented in Section 7. Finally, conclusions and 
future work are discussed in Section 8. 

2. Benchmark Suites 

Use of a benchmark suite to accurately predict performance has been used within 
the research community for years. Researchers have taken this idea and created 
their own open-source benchmark suites. It is in the best interest of this research 
group to use these suites as a foundation. A complete discussion of the benchmark 
suites can be found in a previously published ARL report.2 The takeaway from the 
ARL technical report examining each benchmark suite is that there are 2 mature 
benchmark suites to fit the needs of ARL: OpenDwarfs and the Scalable 
Heterogeneous Computing Benchmark Suite (SHOC). Each of these has 
advantages and disadvantages, as was previously documented.2 These 2 suites will 
be summarized here for convenience. 
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2.1 OpenDwarfs 

The OpenDwarfs suite was created by Virginia Tech.3 The suite consists of 13 high-
level applications spanning a variety of domains covered by the computational 
dwarfs presented in Berkeley’s report.1 Each dwarf implemented in the suite 
represents a communication pattern or particular computation that is common to 
important applications to the industry, which is the goal of using a benchmark suite 
to predict performance. The particular dwarfs have been programmed and are 
therefore not optimized for a particular architecture as much as possible. This 
particular suite implements the computational dwarfs explicitly from the Berkeley 
report.1  

2.2 SHOC 

SHOC was created by researchers at Oak Ridge National Laboratory and the 
University of Tennessee4 with the purpose of testing the performance and stability 
of computer architectures through the use of performance and stress testing. 
Performance testing is used to measure system performance, while stress testing is 
used to determine any hardware issues that may impact performance. The 
benchmark suite itself is broken into 3 levels of tests. Level 0 stress tests the low-
level hardware characteristics such as bandwidth tests. Level 1 is the 
implementation of the computational dwarfs. Level 2 is the real world applications. 
This suite has a few optimization techniques it uses to produce the most accurate 
timing results possible. First, it runs one kernel for a long time to increase the odds 
of seeing transient effects from the architecture—which is important when trying 
to predict real world runtimes. It also minimizes the data transfers so that pure 
runtime is accurately measured. This suite also contains additional tests that are not 
present in Berkeley’s report.1 

3. Related Works 

OpenDwarfs and SHOC are only 2 of many benchmarking suites available. There 
is also Rodinia,5 Graph500,6 and Linpack.7 Each of these provides a slightly 
different way to benchmark various architectures. The field of benchmarking is 
constantly evolving and changing to meet the demands and specifications of new 
architectures and applications. A good example of this is the High-Performance 
Conjugate Gradient (HPCG)8 benchmark that was released in late 2013 to better 
represent the modern day applications computers face. It is presented with the 
Linpack benchmark in the Top 500 list. Even with this evolving nature of 
preexisting benchmark suites, a portable solution that is designed to assess current 
and emerging architectures is lacking. 
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The goal of this work is to create a benchmark suite that is optimized for each 
available architecture by using autotuning methodologies. Other researchers have 
used OpenCL9 or CUDA to autotune code.10 The work presented in both papers 
mainly focuses on Graphic Processing Units (GPUs) and autotuning kernels for one 
architecture. Our work is broader given we are concerned with every available 
architecture and true heterogeneous computing. The work from the papers supports 
the case that autotuning is an important factor in improving performance; each 
author saw an improvement in performance when compared to the untuned version 
of the code. Other authors have compared results across multiple architectures11 
without the use of autotuning. 

Autotuning itself has been a topic of research in the industry. There are many 
different methodologies that could be employed. In this work, we use an exhaustive 
search method to ensure we get the optimal answer each time. Others have used 
different search methods. Abu-Sufah and Karim12 used training data to classify 
which type of matrix the given input is; they then set runtime parameters based on 
that classification. They also changed the way the data was processed based on the 
training data. In this work, we are using an empirical method to tune our kernel. 
The kernel presented here is quite different than the one presented in their paper;12 
therefore, we could not reuse their training data. Autotuning has also been used in 
performance portable solutions.9,13,14 Phothilimthana et al.13 present a case for 
autotuning but does not create a way to automatically achieve this in the way our 
solution does. The work presented by Pennycook et al.14 shows how performance 
can suffer when bad values are chosen for various parameters, which supports the 
claim that autotuning is needed. However, they concentrate on a Message Passing 
Interface (MPI)/OpenCL approach, whereas we are benchmarking using only 
OpenCL.  

4. Backtrack Branch and Bound 

The BBB algorithm is a way to search for a solution to a problem among a variety 
of potential solutions. This algorithm is used to solve various search and global 
optimization problems for large spaces that are not easily managed. In a nutshell, 
the BBB algorithm’s goal is to extend a partial solution into a complete solution. 
The partial solution includes consistent values for some of the variables. The 
simplest of problems use the BBB algorithm, but the computing time is lengthy. 
There are distinct differences between the backtracking procedure and the branch 
and bound procedure; the backtracking part is used to find all probable solutions 
that are obtainable for the problem, it traverses tree by using the Depth First Search 
method, realizes it made a mistake and redoes the last choice by backing up, and 
the state space tree is searched until a solution is found.  
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The branch and bound part solves optimization problems, it is able to traverse a tree 
in any way—the Depth First Search or Best First Search—if a better optimal 
solution is found, the presolution is let go, the state space tree is searched as a whole 
to find the optimal solution, and lastly, it includes a bounding function.  

According to researchers at the University of California at Berkeley, a technique is 
required to figure out which parts of the search space are not needed because they 
do not contain anything that is worth searching.1 Branch and bound algorithms use 
the divide-and-conquer principle, which means that the space that is being searched 
is divided into smaller subregions that are  known as branching, and the bounds are 
found on the solutions that are in the subregion.1 Two important aspects of the BBB 
algorithm are the expansion and evaluation procedures. During the expansion 
method, one of the internal nodes is taken from the search tree and is used to create 
its children.15 During the evaluation process a lower bound is computed on the cost 
of the solution.  

Lastly, the lower bound will lead in directing whether a node should be expanded 
or the order in which nodes are supposed to be expanded.15 The branch and bound 
algorithm has 4 basic operations: branching, evaluation, bounding, and pruning. 
During the BBB process a problem is selected, the problem is branched and split 
into subproblems. Once the subproblems are created they are evaluated. If the 
solution to the subproblem is infeasible, then it is pruned and the subproblem is 
deleted. If the solution to the subproblem is not infeasible, then the bounds of that 
solution are updated and the subproblem is added to the queue. Figure 1 shows a 
general flow for the BBB algorithm. 
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Fig. 1 Diagram of Nqueens algorithm 

The good thing about backtracking is that it can repeat without difficulty through 
all variations of a set; in doing this, it guarantees accuracy by listing all options. 
For this to work, the search space must be pruned.16 Thrashing is a disadvantage of 
the backtrack algorithm, which is a continuous failure for the same reason. If the 
problem cannot be identified, searches in different parts of the spaces will continue 
to fail.16 Intelligent backtrack is used to fix this problem. The variable that continues 
to fail is returned immediately.  

The 2 goals in the branch and bound search are to find an optimal solution and 
prove the problem’s optimality. To reduce runtime, the only potential solutions that 
should be searched are those thought to be a good or possible optimal solution.17 
When only searching for the good, we will be able to prune the solutions that are 
of no use.  

The BBB method can be parallelized. If the search space is split up so that each of 
the processors maintains their own subregion, the processors will be able to execute 
independently. If the processors cannot be kept occupied with high-quality work, it 
may be in the best interest to keep the tree small during the starting or ending point 
because the latter works more efficiently when the tree is smaller in size due to the 
parallel computation completing so much more work.18 In a regular branch and 
bound search the active nodes may have to be thrown away because there is not 
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enough space, which may contribute to the loss of an optimal solution. However, 
when using a parallel system it is expected to have enough memory so that the 
search can be completed.18 To make sure that the search methods’ parallel 
implementation is effective, it is a good idea to ensure that the search tree is 
consistently spread amongst all of the processors. If possible, all of the shared data 
should be placed close to each other; doing this will cut back on the time that the 
algorithm uses to travel and communicate.15 The only issue is the fact that the 
search tree is only known during execution. Because of this, the algorithm has to 
be able to manage any tree that is created during execution time while keeping 
distribution and communication locality even.15 

5. Autotuning Background 

Producing meaningful benchmarking results across architectures is one of the 
challenges faced when creating a benchmark suite for heterogeneous computers. 
This is especially true when using a portable application program interface (API) 
such as OpenCL, which was used for this work. There are 2 types of APIs that could 
be used to write kernels: portable APIs (i.e., OpenCL) or vendor-specific APIs (i.e., 
CUDA). The vendor-specific APIs can be used to more precisely target the vendor-
specific architecture associated with that API leading to greater performance. 
However, the same code cannot be used on different architectures from different 
vendors. OpenCL can be used across all architectures but the performance will tend 
to vary. OpenCL is portable but performance is not. 

A significant aspect to benchmarking is code optimization, which ensures the 
results are as accurate as possible. However, optimizations can be misleading and 
lead to incorrect conclusions regarding the relative performance between 
architectures, especially on heterogeneous computers with immature technology. 
Heterogeneous computers have shown more sensitivity to source-level 
optimizations and runtime parameters than traditional computers. In this situation, 
the kernel can suffer from incorrect optimizations, resulting in unfair runtime 
comparisons between architectures, especially when a portable API is used. Fair 
runtime comparisons between architectures occur when the same level of 
optimization is present for each architecture. For a benchmarking methodology to 
use a portable API, optimization techniques must being integrated. The code can 
be manually tuned for each architecture but this should be avoided since it is prone 
to large differences in effort and uncertainty. Another way is to create a mechanism 
to automatically tune the code where different parameter values are swept to 
determine the best possible solution. In this work, source-level kernel 
parameterization along with an autotuning software developed in-house that 
sweeps over all possible combinations of kernel parameters was used to determine 
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the optimal combination for each architecture so that the results for each 
architecture are the most optimal. 

Figure 2 shows a high-level diagram of how the autotuning software works. This 
was created by researchers at ARL and used for this work. The core of the 
methodology is the kernel generator code, which generates variations of the code 
based on the combination of the input runtime parameters. A sample of this code 
can be seen in the box above the “Kernel Generator Code” box in the figure. This 
is a “C” preprocessing syntax code that takes in the input parameters seen in the 
lowest box as input and produces the code on the left and right depending on the 
input. In this particular case, the kernel generator code determines how many times 
to unroll the loop in the input code. The first input of “4” will be given to the kernel 
generator code and it will produce the results on the left, as demonstrated by the 
purple-line path. The same process occurs with an input of “8”, as seen with the 
dashed-blue lines, resulting in the code on the right. 

 

 

Fig. 2 Autotuning diagram 

Within this work, multiple kernel parameters were used for the autotuning. 
Normally, the number of kernel parameters being swept is between 4 and 10. This 
produces a huge number of individual kernels that will be tested to determine the 
optimal kernel per architecture. As the proof-of-concept presented here, only 2 are 
swept. This is to minimize the data and ensure that the program and autotuning 
methods are working as intended. 
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6. Method 

Previous work done by the research group at ARL integrated 6 kernels from the 
OpenDwarfs and SHOC benchmark suites into the in-house autotuning 
heterogeneous benchmark suite. These kernels include a reduction algorithm, a  
2-dimensional (2-D) stencil algorithm, a Sparse Matric-Vector Multiplication 
(SPMV) algorithm, a Breath-First Search (BFS) algorithm, and a Fast Fourier 
Transform (FFT) algorithm. Each of these algorithms covers a different application 
area laid out by the University of California, Berkeley’s technical report1 on 
computational dwarfs. For each of these algorithms, a parameterized kernel was 
written and run through the autotuning code to obtain the optimal kernel for a 
variety of architectures. The dwarfs that were already covered are listed in Table 1 
along with the general application covered. 

Table 1 Dwarfs that have been implemented 

Dwarf Name Description Application area 

Sparse linear algebra SPMV Matrix-vector multiplication 
with sparse matrices. 

Embedded computing, 
general purpose 
computing, machine 
learning, graphics/games, 
Intel RMS 

Spectral methods FFT 

Converts data from the time 
domain to the frequency 
domain to reduce the 
complexity of a calculation. 

Embedded computing, 
machine learning, 
graphics/games 

N-Body methods N-Body . . . General purpose 
computing 

Structured grids Stencil2D Calculate a 9-point 2-D stencil. 

Embedded computing, 
general purpose 
computing, 
graphics/games 

MapReduce Reduction Add a list of elements in an 
array via the use of reduction. 

General purpose 
computing, machine 
learning, databases 

Graph traversal BFS Traverse a graph using a 
breathe-first approach. 

Embedded computing, 
machine learning, 
graphics/games, 
databases, Intel RMS 

 
For this work, the remaining dwarfs were examined to determine the best 
application area to cover. To make this determination, various factors were 
considered, the first being the application area a potential dwarf covered and how 
it related to the others that were already covered. Ideally we wanted to pick one 
very different from the others that were already implemented to expand the breadth 
of coverage of the benchmark suite. The second consideration was whether the 
dwarf would be representative of a known US Army application. One of the end 
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goals of this suite is to help the US Army predict the performance of US Army-
relevant applications on the computers available.   

The dwarfs that were not already covered are listed in Table 2 along with the 
general applications covered, as determined in Berkeley’s report.1 

Table 2 Dwarfs that have not been implemented 

Dwarf Description Application area 

Dense linear algebra Data is stored in dense 
matrices or vectors. 

Embedded computing, 
general purpose computing, 
machine learning, databases, 
Intel RMS 

Unstructured grids 

Consists of an irregular grid 
where data locations are 
selected and the data must be 
updated all together. 

Machine learning, Intel RMS 

Combinational logic 
Logical functions are 
implemented and state is 
stored. 

Embedded computing, 
machine learning, databases 

Dynamic programming 

Calculates a solution by 
breaking up the problem into 
smaller, overlapping 
problems. 

Embedded computing, 
general purpose computing, 
machine learning, databases 

Backtrack, Branch and Bound 

Finds the optimal solution by 
breaking the problem space 
into smaller regions and 
removing suboptimal 
problems. 

General purpose computing, 
machine learning 

Graphical models 

Nodes represent random 
variables and edges are 
conditional dependencies 
within a graph. 

Embedded computing, 
general purpose computing, 
machine learning 

Finite-state machines 

Behavior is defined by states, 
transitions are defined by the 
input, and current state and 
events are represented by the 
system. 

Embedded computing, 
general purpose computing, 
graphics/games 

 
After examining these 2 tables, it was clear that all of the application areas were at 
least covered by a kernel already present in the benchmark suite. Therefore, the 
various applications areas themselves were examined to determine if there was an 
area that particularly matched up to a US Army-relevant application; this leads to 
machine learning as the application area chosen to explore. The Berkeley report1 
highlights 2 kernels that were added specifically to support machine learning: 
dynamic programming and BBB. The latter was chosen as the dwarf to concentrate 
on for this work. Either could have been chosen but the BBB provided a better 
opportunity to link performance to machine learning. 
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The first step was to examine what the other benchmark suites did for the BBB 
algorithm. OpenDwarfs implemented an Nqueens algorithm, which seemed to be a 
very well-known and respected BBB algorithm. It was chosen as our baseline 
algorithm as well. Then, a literature search was performed to determine if 
optimizations others made could be reused.   

An Nqueens test bench program with autotuning methodologies was then 
developed. This included implementing an Nqueens kernel within OpenCL and 
creating a driver program to test the kernel. The results were documented as a 
baseline for the next stages of integration. Testing was also done at this time. It is 
important for the results to be accurate so that the timing results are valid. 

The test bench program with 2 autotuning parameters was implemented, the first 
being the problem size, which was the size of the board, and second, the number of 
threads, which is the number of threads that were all run at once. The results were 
gathered on Excalibur and FOB to show how performance varied with the 
parameters. 

7. Results 

The Nqueens kernel was run on 2 heterogeneous machines at the ARL DSRC: FOB 
and Excalibur. The FOB is a 64-node heterogeneous cluster consisting of 16-IBM 
dx360M4 nodes, each with one NVIDIA Kepler K20M GPUs and 48-IBM 
dx360M4 nodes, and each with one Intel Phi 5110P. Each node contains a dual-
Intel Xeon E5-2670 Central Processing Units (CPUs), 64-GB of memory and a 
Mellanox FDR-10 InfiniBand host-channel adapter. Excalibur has 3,13-Intel Xeon 
E5-2698 compute nodes with 128-GB of memory and an InfiniBand interconnect; 
32 of these nodes have 256-GB of memory and an NVIDIA Tesla K40 GPU. More 
details on Excalibur can be found on the US Army DSRC website.19 

Figures 3 and 4 show the results of FOB for the Many Integrated Core (MIC) 
processor and the GPU, while Tables 3 and 4 show the runtimes. It can be seen that 
overall the results on the GPU are slower than on the MIC; however, both have the 
same best performing kernel for the largest board. This kernel occurs when the 
number of threads executing at once is 16. It can also be seen that the lines on the 
graph begin showing more variation more quickly on the GPU than on the MIC. 
This can be interpreted as the GPU being more sensitive to the number of threads 
sooner than the MIC. 
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Fig. 3 Nqueens results on FOB using the MIC architecture 

 

 

 

Fig. 4 Nqueens results on FOB using the GPU architecture 
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Table 3 Runtime in µs results from FOB using the MIC architecture 

Size of 
board 

N threads 
1 2 4 8 16 

4 0.00922333 0.010555 0.1284 0.00778667 0.00715833 
5 0.020015 0.017565 0.01851 0.0150917 0.00976667 
6 0.031845 0.03124 0.0186283 0.0221533 0.022465 
7 0.06589 0.05767 0.04447 0.0441065 0.0218433 
8 0.121363 0.111075 0.088975 0.0516883 0.0352317 
9 0.169782 0.146932 0.129743 0.120732 0.05366 

10 0.175228 0.176315 0.175922 0.206492 0.0574817 
11 0.343343 0.32064 0.346177 0.310695 0.147945 
12 1.63164 1.35784 1.42274 1.44006 0.686292 
13 5.62035 6.21 6.38215 6.27627 3.48108 

 

Table 4 Runtime in µs results on FOB using the GPU architecture 

Size of 
board 

N threads 
1 2 4 8 16 

4 0.00096167 0.00107833 0.00099167 0.00094833 0.00124 
5 0.00142333 0.00144667 0.00161167 0.00170667 0.001785 
6 0.002135 0.00235 0.00256 0.00255833 0.00266667 
7 0.00297167 0.00351333 0.00395167 0.00399667 0.00429 
8 0.00719833 0.00606333 0.00537 0.00588 0.0062 
9 0.02837 0.01898 0.0137283 0.0109267 0.00946 

10 0.146675 0.08932 0.0551933 0.0361517 0.027215 
11 0.885253 0.52041 0.287963 0.185977 0.123232 
12 4.86937 2.90203 1.84538 1.07812 0.746093 
13 9.81857 9.83973 9.57822 6.161961 4.32638 

 

The results from Excalibur are seen in Table 5 and Fig. 5. The figure has the same 
pattern as the figures from FOB. However, there are slight variations. When 
compared to the GPU results from FOB, the GPU on Excalibur has the same best 
kernel (i.e., N threads = 16), but there is more separation of the lines at the higher 
workloads. In addition, the worst performing workload performs far worse on this 
GPU than on the GPU from FOB. 
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Table 5 Runtime in µs results on Excalibur using the GPU architecture 

Size of board N threads 
1 2 4 8 16 

4 0.00171 0.00171 0.00175 0.00241 0.00172 
5 0.00225 0.00248 0.00248 0.00257 0.00272 
6 0.00301 0.00326 0.00333 0.00371 0.00469 
7 0.00425 0.00458 0.00476 0.00514 0.00544 
8 0.00906 0.00729 0.00674 0.00726 0.00771 
9 0.03004 0.02128 0.01599 0.0128 0.01142 

10 0.15133 0.09297 0.0593 0.03973 0.03022 
11 0.91115 0.53566 0.31445 0.19191 0.12672 
12 6.02307 3.48799 1.4461 1.16836 0.75468 
13 10.3828 17.6849 6.92684 7.0915 4.58497 

 
 
 

 

Fig. 5 Nqueens results on Excalibur using the GPU architecture 

These results show the importance of autotuning due to the variation of 
performance one can see through the graphs. In all cases, 16 seems to perform the 
best, but if that is not feasible for the problem space, one would see a huge variation 
in results. In addition, this provides a valid way to compare the architectures. We 
can now compare the best performing kernels at each size with confidence that we 
are running an optimal kernel for each. This data can now be used to predict 
performance on each architecture with the highest degree of accuracy. This data 
also shows how the different numbers of threads impact performance. 
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8. Conclusions 

The work presented here details the steps taken to add a new kernel to the autotuned 
heterogeneous benchmark suite developed by ARL. The algorithm integrated 
within this work expands the breadth of areas covered by this suite. 

The results show the impact of autotuning and how it can be used to better predict 
performance of applications on different architectures. The autotuning allows for 
the most optimal runtimes to be produced, thus enabling consistent comparison 
among architectures.  

9. Future Work 

Future work includes integrating the test bench program into the heterogeneous 
benchmark suite at ARL. This means creating child classes for Nqueens’ specific 
parameters to follow the coding design that has already been established. To 
provide a better picture of performance on the different architectures more 
parameters should be added. One of the proposed parameters includes a parameter 
to force each thread to do more work. Right now, each of the threads updates one 
position. The parameter would expand this so that threads would update more 
positions. A maximum number of position updates would have to be determined. 
This will ensure that the threads have enough work to do, which will help better 
predict performance. 

Other parameters could include changing the workgroup size to vary how much 
work each work group does and vectorizing the code to use local memory. Each of 
these will help exercise various elements of the architecture to really help guide 
programmers as to what is best for each architecture while providing valuable 
insight into how the architecture works. 

Other work outside of this kernel includes adding more parameterized kernels to 
the benchmark suite. The steps outlined on how the Nqueens algorithm was added 
will be followed for each new kernel. The more kernels that are added, the more 
coverage the benchmark suite provides. 
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List of Symbols, Abbreviations, and Acronyms 

2-D 2-dimensional 

API application program interface 

ARL US Army Research Laboratory 

BFS Breath-First Search 

BBB Backtrack Branch and Bound 

CPU Central Processing Unit 

DSRC Department of Defense Supercomputing Resource Center 

FFT Fast Fourier Transform 

GPU Graphic Processing Units 

HPC High-Performance Computing 

HPCG High-Performance Conjugate Gradient 

MIC Many Integrated Core 

MPI Message Passing Interface 

SHOC Scalable Heterogeneous Computing Benchmark Suite 

SPMV Sparse Matric-Vector Multiplication 
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